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A controlled dynamical system subjected to high-frequency excitations is investigated. A standard controlled system is constructed 
using a change of variables, which generalizes the Bogolyubov change of variables in the problem of a pendulum with a vibrating 
suspension point. An effective procedure is developed for the approximate solution of the problem of optimal control over an 
asymptotically large range of variation of the argument. The property of closeness of the approximate solution to the exact solution 
with respect to the slow variable and functional is established. A generalization of the algorithm for solving the problem to 
dynamical systems with variable parameters is given. The effectiveness of the approach is illustrated by investigating the problems 
of control of mechanical systems: the oscillations and rotations of a rigid body with a vibrating axis, and the motion of a 
"microparticle" in a force field, modelled by travelling and standing waves. �9 2006 Elsevier Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

A controlled dynamical system, subjected to high-frequency periodic excitations, is considered [1]. It 
is assumed that the equations of motion (for example, in Lagrange form) can be represented in terms 
of dimensionless quantities as follows 

ii = Q(O, q, L 1, u, ~,), q(to) = q0 q(t0 ) = q0 (1.1) 

0 = ~,t, t o < t < T ,  ~,>> 1, u ~  U, q~ Oq, CIE De 

Here a dot denotes a derivative with respect to time, (q, q) is a 2n-vector of the phase variables, 0 is 
the fast phase of the external periodic excitation, u is the r-vector of control, and U is a fixed set. The 
numerical parameter ~, can take asymptotically large values (~, ---) oo), i.e. e = ~-1 is a small parameter. 
It is assumed that the quantities I q I, I q I, l u I are of the order of unity with respect to the large parameter 
~,. The quantities to, qO, qO are assumed to be given, and the controlled motion of the system (1.1) 
is considered in a fixed time interval to --- t ___ T (of the order of unity). The function Q must be 2n-periodic 
and piecewise-continuous in 0; it is assumed to be fairly smooth enough with respect to the remaining 
arguments. The structural characteristics and properties of smoothness of the functions Q and u will 
be refined below. They are needed to enable the problem of control and optimization for system (1.1) 
to be reduced to a standard form, allowing of the use of asymptotic methods [1-3]. 

We will formulate the optimal control problem. We will assume that the final conditions imposed on 
the variables q and 9 at a fixed instant of time t = T have the general form 

M(q, Ll)Jr = O, M = (M n . . . . .  Mm), O < m < 2 n  (1.2) 

In particular, conditions (1.2) may be absent (m = 0), or correspond to the two-point problem: 
q(T) = qT, 9(T)  = 9 T, when qT, 9 ~ are known. The vector function M is assumed to be smooth enough 
in the region under consideration, and a possible regular dependence on %, for example a smooth 
dependence on e, I~1 - ~0, is not indicated for brevity. 
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The performance index of the control is taken in the form of the integral functional 

T 

J[u] = g(q, gl)lr + f G(O, q, el, u)dt ---) rain, 
u 

to 

u ~ U (1.3) 

The dependences of the functions g and G on the arguments are similar to those indicated above 
for the functions M and Q respectively. For a fixed value of )~, relations (1.1)-(1.3) give the standard 
formulation of the problem of optimal control over a fixed time interval, the solution of which is 
constructed based on the necessary conditions in the form of the maximum principle [4]. 

Note that the dependence of the functions Q and G on the fast phase considerably complicates both 
the analytical and numerical investigation of the optimal control problem because of the oscillations 
of the right-hand sides of the equations with time for as high a value of the frequency 2~ as desired. 
However, when certain natural conditions are satisfied, we can use this property to construct an 
approximate solution by reducing the equations of the boundary-value problem of the maximum principle 
to a Bogolyubov standard form and employ the method of averaging [5, 6] using the well-known method 
[2, 3]. These conditions are related to the possibility of using a change of variables [1], which generalizes 
the Bogolyubov change of variables in the classical problem of the oscillations of a plane pendulum 
with a vertically vibrating suspension point [5]. 

2. R E D U C T I O N  OF THE C O N T R O L  P R O B L E M  TO A 
STANDARD F O R M  

We will first make an elementary change of the time argument t for the fast phase 0 = ~ ,  which varies 
over an asymptotically long interval A0 = )~At -- e -1. Relations (1.1) then take the form 

q,, = e2Q(O,q ,e - lq , ,u ,  - l ) ,  q(Oo ) = qO, q,(Oo) = 80o 

00 = ~.t 0, O = )~T-> 1, 0 0 < 0 < O  
(2.1) 

Here the prime denotes a derivative with respect to the phase 0. Note that the initial value of the 
derivative q' - e ,~ 1. The main requirement for the change of variables related to the structure of the 
function Q is that the variable q be slow over the interval A0 (2.1) under consideration. 

Following the well-known approach [1-5], we will assume that the right-hand side of Eq. (2.1) has 
the form 

EaQ -= i~R(0, q, q') + EZs(0, q, e-~q ', u) (2.2) 

Here R and S are 2n-periodic piecewise-continuous functions of 0, which depend regularly on these 
arguments in the region q ~ Dq, IUlq ' E DO, u E U. The possible regular dependence on the small 
parameter e is not indicated for brevity. 

The class of functions Q (1.1) or (1.2), which satisfy condition (2.2), is fairly wide. In applied problems 
(systems with rapidly rotating phase [5]) we usually have the situation where R - 0, i.e. Q = S. According 
to representation (2.2) for R - 0, the dependence Q - ~ is allowed, which considerably extends the 
class of functions Q [1, 5]. 

For system (2.1), (2.2) to be representable in a standard form with a small parameter e in the interval 
A0 -- e -1, it is sufficient to require that the following condition should be satisfied 

(R0)-=0, Ro = R(O,q,O ), 0>00,  q ~ D q  (2.3) 

where the angle brackets denote averaging over 0. We can then propose the replacement (q, q') 
(x, y), in which both the n-vectors x and y are slow: x" - e, y'  - ~. In fact, we assume 

0 0 

q = x + e R * * ( O , x ) ,  q ' =  e y + E A R * ( O , x ) ;  R* = fRo('C,x)d'c, R** = ~AR*(z,x)ax 
00 00 (2.4) 

X E Dq, [y + AR*(0, x)] ~ D O, AR* - R* - (R*) 



854 L .D .  Akulenko 

The replacement q ---) x (2.4) is close to identical and is independent of y; the relation between q'  and 
y depends onx  and assumes that q' is small (q" ~ e ; x , y  ~ 1). According to condition (2.3), the functions 
R* and R** will be 2re-periodic in 0 and bounded for all 0 > 0o, x ~ Dq. It is essential that the change 
of variables (2.4) does not involve the unknown function u. 

With the condition that the vector function R0 is continuous in q, we will differentiate relations (2.4) 
by virtue of system (2.1) and (2.2) to obtain a system of two vector equations of standard form [2, 3] 

x' = eX(0, x ,y , e ) ,  X(0o ) = qO., y' = Y(0, x , y , u , e ) ,  Y(0o) = qO 

O, x ) ] - l y  **, 2 X - - [ I + e R * * ' (  = y - e R  x y+ l~  .. .  

Y --- - AR*'(0, x ) X  + e -1 JR(0, x + eR**, ey + eAR*) - Ro(0, x)] + 
(2.5) 

+ S(0, x + eR**, y + AR*, u) = - AR*x'X + R'oxR** + (R'q.)o(y + AR*) + S + e... 

The functions X and Y (2.5) are assumed to be smooth in x, y and u in the above-mentioned ranges 
when e > 0 is sufficiently small. The function X is linear in y, and in the first approximation X = X0 = y; 
moreover, it is independent of u. The function Y = I10 is quadratic in R. This is the essential structural 
difference between system (2.5) and the previously investigated weakly controlled systems of standard 
form [2, 3]. 

The slow variable x is close to q with an error O(e) in the interval A0 -- e -1, i.e. At -- 1. The slow 
variable y differs by an amount AR* -- 1 from the velocity q, which is not slow in the common sense 
[5, 6] and, moreover, / j  - e -1. However both vectors q and q are defined with the required degree of 
accuracy (with an error O(e)). 

Note that if R -= 0, the transformations of (2.4) become elementary, q = x and q' -- ey, and system 
(2.5) takes the form 

x' = ey, x(00 ) = qO., y '  = e S ( O , x , y , u ) ,  y(00) = 0 ~ (2.6) 

In the general case, a system of the form/~ = e~  is a multiphase system (the function ~ is periodic in 
9) and presents considerable difficulties for an asymptotic analysis [7]. A local investigation can usually 

be carried out assuming that (0 = ~-ec0 in the time interval At - 1/~-e [6]. 
A system of equations of the form (2.1), (2.2) can be the initial one and is obtained without 

transforming the argument 0 = Zt, assuming the asymptotic unboundedness of the parameter  ~.. This 
indicates the relative smallness of the generalized forces eR + e2S when q - 1, 0 - e, ~. = 1. 

We will transform the final conditions (1.2) using relations (2.4) to obtain 

M ( x + e R * * ( O , x ) , y + A R * ( O , x ) ) [ o  = O, 0 = Te  -1 (2.7) 

In the first approximation in the small parameter,  the term eR** in the first argument of the function 
M (2.7) can be ignored. The presence of the term AR* in the second argument requires that the quantities 
to and T - 1 should be specified with high accuracy (an error of O(e2)). A change in the parameters 
to and T by O(e) leads to a substantial variation of the quantity AR* in (2.7), of an order of unity for 
0 = O. As was pointed out, this property is due to the singular nature of the variable 0, since/j - e -1. 

We will write functional (1.3) in the new variables 

o 

J[u]  = g ( x  + ER**, y + AR*)[o + e I G ( 0 ,  x + ~R**, y + AR*, u)dO (2.8) 

00 

in which the functions R** and AR* are defined by (2.4), as was the case for formula (2.7). To find the 
solution in the first approximation, we can confine ourselves to quantities of an order of unity, while 
the term eR** ing  and G can be dropped. 

The functions M, g and G may depend regularly on the small parameter  e, which, in the first 
approximation considered later, is assumed to be equal to zero. 

We will briefly describe the asymptotic procedure of the approximate solution of the terminal problem 
of optimal control (2.5)-(2.8) using the method described previously in [2, 3]. 



Control of the evolution of a dynamical system under high-frequency excitations 855 

3. T H E  USE OF T H E  A V E R A G I N G  M E T H O D  

We will drop the terms O(e 2) in Eqs (2.6), i.e. terms O(e) in the expressions for X and Y; we have 

x' = ey, x(00 ) = q0., y' = EY0(0, x ,y ,u) ,  Y(00) = q0 

Yo = - AR*'y + RoxR** + (Rq,)o(y + AR*) + S(0, x, y + AR*, u) 
(3.1)  

Note that the function Y0 is quadratic in R, R** and AR*. 
System (3.1) can be represented in the form of a second-order equation inx and contains a singular 

dependence on x' 

x" = e2Y0(0, x, e-ix', u), x(00 ) = q0, x'(00) = eq ~ (3.2) 

However, on transferring to the argument t, the equation does not contain this singularity 

5( = Yo(~.t, x, Yc, u),  X(to ) = q0, ~ ( t0 )  = c) ~ (3 .3 )  

The right-hand side of Eq. (3.3) is a rapidly oscillating function of t. Note that the structures of Eqs 
(3.2) and (3.3), and Eqs (2.1), (2.2) and (1.1) corresponding to them, differ considerably. 

Henceforth, in the final conditions (2.7) and the control performance index (2.8) we will drop 
quantities O(e). Using the mathematical techniques of the maximum principle [4] we will write the 
necessary optimality conditions for the control u 

H = eHo(0, x, y, p, u) --* max, u ~ U; P = (Px, py)T 
u 

Ho = (Px, Y) + (Py, Yo)-  G, u = u*(O, x, y, p) 
f ~ ~ o - ~  t ~ i t 

p x = - e ( H o x ) ,  py - s  , (H0)* =H01u.,  px, y ( O ) =  (Z, Mx, y)o-gx,  ylo 

(3.4) 

Here  H is the Hamilton function of the problem, Px andpy are variables (momenta) adjoint to x and 
y respectively, and Z is the m-vector of the Lagrange multipliers. 

We will assume that the vector function u* is defined explicitly in analytical form and is 2rr-periodic 
in 0 and, of course, smooth in x, y and p. After substituting the expression for u* into Eqs (3.1) and 
(3.4) we obtain a 2n-dimensional Hamiltonian system of equations in Bogolyubov's standard form. It 
is required to construct a solution of the boundary-value problem of the maximum principle, including 
obtaining the m-vector of the Lagrange multipliers Z, with an error O(e). The problem of a numerical- 
analytical investigation can be simplified considerably using the averaging method [5, 6] and the 
asymptotic procedure described in [2, 3]. 

In the first approximation in e, we obtain the averaged boundary-value problem in the original "slow" 
t ime t 

0 = c)0; = rl, ~(t 0) = q ; rl = H(~,I1, W), rl(t0) W = (W~,~n) r 

fr = -h~, fen = -hq, N~, n = u  Mg, n)r+q~.nlr = 0 (3.5) 

M(~, r I+AR*(~ ,~ ) ]  = O, to<_t<_T 
T 

Note that the function AR* depends 2rt-periodically on 0 = te 1. 
System (3.5) can be integrated in the short interval At - 1; it is autonomous and Hamiltonian. The 

averaged variables ~, 1"1 and ~ ,  n, corresponding to x,y andpx, y are defined by the Hamiltonian H i (3.4), 
i .e.  

n, V) = n, V))  = n)  + (V,v - ( C * ) ,  
! 

h v = (n ,  r I )  r ,  = 
(3.6) 

The first integral h = const (3.6) of system (3.5) can be used for the analytical integration of the 
equations or for a numerical solution of the problem for monitoring the accuracy (or computational 
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errors). The investigation can be simplified considerably in the case of a linear or linear-quadratic control 
problem with periodic rapidly oscillating coefficients. For non-linear problems, for which one can carry 
out operations to maximize the function H0 with respect to u (3.4) and averaging (3.6) in analytical 
form, one can also achieve a considerable simplification of the numerical-analytical solution of boundary- 
value problem (3.5). A more general case requires the use of numerical methods for both 
maximization and averaging, which leads to extremely cumbersome procedures. The use of the averaging 
procedure is justified by the possibility of cancelling a number of terms of Eqs (2.5) and considerably 
shortening the integration interval. 

4. BASIC RESULTS 

Formally, the scheme for solving the boundary-value problem consists of finding the unknown initial 
data ~ ,  ~o and the parameter Z, which define the desired variables ~, 11, ~ ,  ~n as the solution of a 
Cauchy problem. We will represent it in the form 

= ~(t - to, qO, {1o, o ,  Z), 

= ~( t - to ,  q~176 o , x ) ,  

1] = q ( t -  t o, qO, {1o, o ,  Z) 

o E wo, He X 
(4.1) 

The possible dependence on 00 is not indicated for brevity. The sets ~,0 and X are chosen from 
conditions (1.1), imposed on q, q and u, taking into account the replacement formulae (2.4). To determine 
the 2n-vector ~0 and the m-vector g (2n + m unknowns in total) one uses the 2n + m final conditions 
(3.5) with t = T, into which we substitute expressions (4.1) 

N * ( T -  t o, O, 0 o, qO, {10; 0 ,  Z) = 0, 

M * ( T -  to, O, 0 o, qO, {10; 0 ,  Z) = 0 

qO ~ Oq, {10 ~ Dq 
(4.2) 

The 2n-vector function N* is obtained from the transversality conditions (3.5) for ~ ,  ~n by substituting 
expressions (4.1) with t = T. The above-mentioned 2re-periodic dependence on 00 and | (in terms of 
the functions AR* and R**) is also indicated. The expression for M* (4.2) is obtained from the final 
condition M = 0 (3.5) on substituting the solution (4.1). 

It is further required to obtain the real roots ~*, ~* as a function of known (measured) quantities, 
to which the time parameters T -  to, O, 00 and the phase parameters q0, q0 are related. Suppose these 
roots have been obtained; then by substituting ~*, g* into expressions (4.1) and then (2.4), (3.4), (2.7) 
and (2.8) we can determine the approximate phase trajectory q0 and q0, the open-loop control u0, and 
the discrepancy M0 in satisfying the final conditions and the value of the function J0. The following 
assertions hold. 

Theorem 1. When the conditions qo ~ Dq, ?1o ~ Dq hold and the roots ~t*, ~* are simple, i.e. det(0(N*, 
M*)/O(W*, X*)) ~ 0 in the region of the known parameters under consideration, the approximate solution 
determined above is e-close to the optimal solution in terms of the trajectory, the final condition and 
the functional. The closeness in terms of the control occurs in the sense of the integral metric, this 
closeness being uniform if the function u* of (3.4) is smooth. 

The proof of the theorem follows from the constructions given and from the asymptotic methods of 
optimal control [2, 3]. 

We will derive expressions for the approximate solution of the optimal control problem (1.1)-(1.3) 
in the original variables. According to relations (2.4) and (4.1) we obtain the phase trajectory 

qo = ~(t  - t o, qO, {1o, ~ , ,  X*) - qo( t - to, T -  t o, O, 0 o, qO, (lo) 

{10 = rl(t - t 0, q0, {10, ~ , ,  X*) + AR* (0, q0) -- {10( t - to, T - t 0, O, 00, q0, q0) 
(4.3) 

An important feature is the dependence ofq ~ and q0 on O, 00 - -  E - l ;  it disappears when R 0 - e. Similar 
properties occur in problems of the weak control of quasi-linear oscillatory systems over an asymptotically 
long time interval [1, 3], when the terminal term in the functional and the final conditions depend on 
the fast variables. 
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From the viewpoints of methodology and applications it is of interest to develop an asymptotic 
procedure for the approximate solution of optimal control problems with a non-fixed instant of the 
process termination (time-optimal type problems). However, this problem requires a separate 
investigation due to the essential non-uniqueness of the solution of the boundary-value problem of the 
maximum principle: the number of roots of the transversality equation may be of an order of E -1 [2, 3]. 

5. G E N E R A L I Z A T I O N  OF T H E  C O N T R O L  P R O B L E M  

We will consider the following system of equations, which is more general compared with (1.1) 

.o 
ij = Q ( O , t , q , d  l , z , u , ~ , ) ,  q(to ) = qO, ~/(t0) = q 

g = Z . ( O i t ,  q, gl, Z ,U,~ .q) ,  z ( t  o) = z ~ 
(5.1) 

The functions Q and Z .  are smooth with respect to the time t and the k-vector z, z e Dz. The 
dependence on the other arguments is similar to that described above for the function Q (see Section 
1). Boundary conditions of the type (1.2) and the functional (1.3) are taken in the form 

M ( q ,  gl, Z)lr = 0, M = ( M  I . . . . .  Mm),  O < m < 2 n + k  

T 

J[u] = g ( q , o , z ) l r +  I G ( O , t , q ,  dl, z , u ) d t - - ~ n ~ n ,  u ~  U 

to 

(5.2) 

The explicit introduction of t into the functions Q, Z and G is made for convenience; without loss of 
generality the argument t can be included in the vector z: 2e + 1 = 1, Zk + l(t0) = to. 

By changing to the argument 0 = ~.t we obtain the following system of equations and initial data 

q" = e2Q, z' = e z . ;  q(00 ) = q0, q'(00) = Et~ ~ z(00) = z ~ (5.3) 

The right-hand sides of Eqs (5.3) contain an irregular dependence on q' of the form eqq" in terms of 
the argument q, see (2.1). With respect to the function Q it is required that the following condition, 
which generalizes (2.2), should be satisfied 

e2Q(0, t, q, e q q  ', z, u, ~,) -- eR(0, t, q, q', z) + e2S(0, t, q, eqq' ,  z, u, e) (5.4) 

A possible regular dependence of the function R on the small parameter e is not indicated; it may 
be related to the term O(e2), i.e. to e2S. It is assumed that the function R possesses zero mean with 
respect to 0 over the period 2n when q' = 0. Using a change of variables [1] of the form (q, q', z) 
(x, y, z) by differentiation of the explicit replacement formulae with respect to 0, by means of system 
(5.3), (5.4) we obtain the equations of the controlled motion in a standard form 

x' = e X ( O , t , x , y , z , u , e ) ,  

y' = e Y ( O , t , x , y , z , u , e ) ,  

z' = e Z ( O , t , x , y , z , u , e ) ,  

x(00 ) = q0, t = E0, x E Dq,  

Y(00) = 40 , ( y + A R * ) ~  D,~ 

0 
z(00) = z , z ~ D z, u ~ U 

0 < e  ~ 1 

(5.5) 

Unlike the expression f o r X  (2.5) we also have a weak (of the order of ~) dependence on the control 
u and on the slow variables t and z. The relation between the variables and the right-hand sides of Eqs 
(5.5) are given by relations similar to (2.4), 

q = x + e . R * * ( O , t , x , z ) ,  q' = I ~ y + E A R * ( O , t , x , z ) ,  z - Z  
o 0 

R** = I A R * d 0 1 '  AR* = R * -  ( R * ) ,  R :'It = I R ~  

00 00 

(5.6) 
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in which the function R0 is represented in terms of R (5.4) when q' = 0. The integration with respect 
to 0 (5.6) is carried out for fixed t, x and z. Differentiation of the replacement formulae (5.6) leads to 
the required expressions for the functions X, Y and Z in (5.5) 

X ( l + e R * * ' ) - l ( y  **' **' + O(e)  = - eR t  - e R  z Z) = y 

AR  x y -  AR  z (Z)  + O(e)  Y = (R'x)R** + (R'q.)(y + AR*) + e(S) - *' *' 

Z = Z , ( O , t , x + e R * * , y + A R * , u , e )  = ( Z ) + O ( ~ )  
(5.7) 

S = S(0, t, x + eR**, y + AR*, u, e) = (S) + O(e) 

Expressions of the type (R~), (S), (Z) imply that the arguments of the functions are taken for e = 0 and 
q = x. It follows from expressions (5.7) that (X) = y while (Y) is the function written ignoring the term 
o(e). 

The final conditions (5.2) and the functional (5.3) are transformed by means of the replacement (5.6). 
We obtain expressions similar to (2.7) and (2.8) respectively. As a result we obtain a problem of optimal 
terminal control over an asymptotically long interval of variation of the fast phase (argument) 
t0 U1 = 00 -< 0 _< O = T8 -1 for the (2n + k)-dimensional vector of the osculating variables (x, y,  z). 
The asymptotic procedure for the approximate solution [2, 3], described in Sections 3 and 4, can be 
applied to this problem. To estimate the accuracy, an assertion similar to the theorem stated above 
holds. 

The approximate solution of control problems of time-optimal type requires a separate consideration. 

6. E X A M P L E S  

We will consider one-dimensional rotatory-oscillatory systems, to which we will apply the above- 
mentioned asymptotic method. As a result of an asymptotic analysis we can construct much simpler 
models of controlled systems, not containing an explicit dependence on time and which enable us to 
use standard procedures (analytical and numerical). 

1. The control o f  plane oscillations and rotations o f  a rigid body about a rapidly vibrating axis. The 
equation of motion of the body has the form [1-3] 

A/15 + laglsin~ = - I.tl(~0(vt)coscp + ~0(vt)sincp) + V (6.1) 

with the corresponding initial data cp ~ (0 ~ Here ip is the angular coordinate, A is the moment of inertia 
about the axis, ~t is the mass, I is the "arm" of the mass forces, the acceleration of which is equal to g, 
~0,1"10 are the coordinates of the axis that performs plane-parallel motion, v is the oscillation frequency 
and V is the moment of the external forces. By introducing the argument 0 = vt we can represent 
Eq. (6.1) in the standard form (2.1), (2.2) 

9" - e(~"(0)  cos ~ + n"(0)  sintp) e21~sintp + s 2 -- U 

E = ~ ,  ~21( = ~tgl, ~ = ~0, TIO, V 
A v  2 p" q = ? 1~2u = AV 2 

(6.2) 

where p is the amplitude of the oscillations of the axis. The initial data q0 ~ qb ~ for Eq. (6.1) and cp ~ and 
ecp '~ for Eq. (6.2) can correspond to an oscillatory or rotatory mode. The first term on the right-hand 
side has the meaning of the expression eR, independent of cp', while the second and third have the 
meaning of e2S. We will assume that the functions ~", 1"1 have zero mean, i.e. condition (2.3) is satisfied. 
Then, by means of the change of variables (2.4) we obtain the following standard controlled system of 
the first approximation 

0 x' = ~y, tp = x+eR**,  x(0) = tp 

y' = e y ( -  ~'sinx + ~'cosx) + e(~"sinx - rl"cosx)R** - e~csinx + eu 

9'  = e y + e A R * ,  y(0) = q~'~ x~ 

(6.3) 
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The Hamilton function H = e J-/0 for controlled system (6.3) with a functional of the form (2.8) enables 
us, after maximization with respect to u ~ U, to determine the optimal control u* and the averaged 
Hamiltonian of the first approximation h in slow time z = e0 

u* = u(O, x, y, py), 1) = 19(X, y, py) = ( u ( 0 ,  x, y, py)) 

h(x, y, Px, Py) = PxY + Py( -  Y (AR*') + (R'xR**) - ~sinx) + o 
(6.4) 

Herepx,y are the momenta and a~ is a new (averaged) control, which is used in the averaged problem. 
The mean values of the functions in relations (6.4) are calculated in explicit form 

1 (AR*') = 0, (R'.~R**) = ~((~,2)_ (Ti,2))sin2x_ (~"q')cos2x (6.5) 

It is interesting to note that the first expression of (6.5) vanishes when (~') or/and (rl') are non-zero, 
i.e. in the new variables there is no uniform on the average displacement of the axis. Analysis of the 
second expression is also of interest [1]. This term is related to the effect of the occurrence of other 
equilibrium positions (in addition to x = 0, rt) and their vibrational stabilization in the uncontrolled 
system (when u = v --- 0). 

The averaged control problem obtained is more sophisticated and difficult to investigate compared 
with the control problem for a physical pendulum with a fixed axis [1-3]. With certain simplifying 
assumptions it can be reduced to the problem indicated but with a different content. In particular, when 

~ e, for motion in an ellipse we have the averaged control problem 

= cosTcos0, "q = sinysin0, 0<y_<n  

x ' = y ,  y' 1 = ~cos2ysin2x+ o 
(6.6) 

As a result we have obtained the system of equations (6.6) of the controlled motion for an equivalent 
pendulum with four positions of relative equilibrium x = 0, rt/2, n and 3n/2 for 0 < x < 2ft. The motion 
of the axis in a circle (7 = n/4, 3r~/4) leads to a simple equation of the controlled motion x" = v. 

If the axis oscillates in a plane in a plane-parallel manner, then, by analogy with problem (6.6) we 
obtain 

= cosycos0, "q = sinycos0, 7 = const 

x' = y, y' = l s i n 2 ( x - 7 ) + o  
q. 

(6.7) 

The control problems for systems (6.6) and (6.7) can be investigated by standard regular methods. 
In the general case, system (6.4), (6.5) can be reduced to the form 

x' = y, y' = a y s i n ( x + o O + b s i n ( 2 x + f J ) - r ,  s i n x + v  (6.8) 

where a, {~, b and [3 are constants, determined by relations (6.5). To solve problems of controlling the 
motion of system (6.8) with various final conditions and functionals it is necessary to develop numerical 
methods, since further simplification is difficult. 

2. The controlled drift o f  a "microparticle" in the force field o f  a travelling wave. In plasma theory it is 
of some interest to investigate the dynamics of "quasi-particles" in an alternating field, which is modelled 
by travelling or standing waves [8], or a wave packet [9]. 

With appropriate assumptions regarding the quasi-stationarity, the motion of the particle in a 
travelling-wave field is described by the equation [9] and initial conditions 

m&'= e E o s i n ( k s - c o t ) + e E  1, s(0) = s ~ ~(0) = ~0 (6.9) 

Here m is the mass and e is the charge Of the particle, E 0 is the amplitude of the intensity of the travelling 
wave, k is the wave number and e0 is the frequency of the oscillations. Equation (6.9) contains the 
additional term eEl, which has the meaning of a small control function. 
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We will introduce dimensionless variables and parameters in the required way; we obtain a controlled 
system of the form (2.1), (2.2) 

q" esin(q -- O) 4- E 2 0 = u, q(O) = q , q'(O) = eq '~ 

q = ks, q' = k~/to, 0 = tot, qO, q,O 1 

s = eEok/(mto 2) ,~ 1, eEu = eElk/(mto2),  u ~ U 

(6.10) 

According to system (6.10) the intensity E1 of the control field is an order of magnitude less with 
respect to the small parameter e than the amplitude E0 of the travelling wave. After transformation 
(2.4) we obtain, in the first approximation in e, the following controlled system of standard form (2.5) 

x' = ey, x(O) = qO_xO 

y' = eys in(x  - O) + ecos(x - 0)[ sinx - sin(x - 0)] + eu, 

q = x + e [ s i n x - s i n ( x - O ) ] ,  q ' =  e y + e c o s ( x - O )  

0 y(0) = q,0_ cosq0 _ Y (6.11) 

From the applied point of view, it is of interest to bring the phase point (s, k) of system (6.9) at a 
certain instant of time T to the origin of coordinates (0, 0), i.e. q(O) = q'(O) = 0. Using the asymptotic 
procedure described in Sections 3 and 4, the variable q is brought to the e-neighbourhood while q" is 
brought to the e2-neighbourhood of the required value. We recall that the variable q' - O(e). 

The averaged equations and the final conditions (when 0 = O = toT) of the first approximation, after 
introducing the slow argument x = e0, according to system (6.11) take the form 

= y,  ~ = D, 0 ~ X ~ Xf, D = ( U * )  

X f = X ( X f )  = 0,  yf  = y(Xf) = - c o s O  
(6.12) 

Suppose, in the functional J[u] (2.8), the functions g = 0, G = u2/2; then u* = py = -pOx + pO is a 
linear function of x. The momentum Px = p0 is constant in the first approximation; for constan(p~ 
after integration of the equations, from the final conditions (6.12) we obtain the expressions 

o 6x f3 (2Ax f  _ Ay f x f ) ,  Px = 

0 2 X ; 2 ( 3 A x f  _ 2 A y f x f ) ,  py  = 

A X  f = X f _  (X 0 + yOx f )  

~. _ 0 A y f y f  y 
(6.13) 

Note that in the averaged Hamiltonian the periodic terms of Eq. (6.11) make no contribution, i.e. 
the travelling wave does not lead to drift of the "particles" in the first approximation. The control u* 
is a linear function of the slow argument x = e0, see (6.10), with coefficientsp ~ y (6.13). The change of 
the slow variables x ~ 0, xf ---) xf - x, x ~ ~ x, yO ~ y reduces this control to a feedback form (the fast 
variable 0 and the quantity O are not subject to transformations), the feedback being negative. 

Note that when constructing the approximate asymptotic solution the contradictory requirement that 
the wave should be quasi-stationary and high-frequency (to ---) ~ )  is unimportant. What is important 
is that the normalization condition (6.10) should be satisfied, and this is achieved by appropriate 
assumptions. 

A controlled system of the form (6.9) can be obtained using model (6.1) assuming g = 0 and oscillations 
of the axis 

= -ps invt ,  11 = pcosvt, p = const 

which corresponds to its motion in a circle of radius p (see (6.6)). 
3. Control o f  the evolution o f  "microparticles" in a standing-wave field. We will consider the modified 

problem [8] for the case of similar oppositely travelling waves. Unlike problem (6.9), the first term on 
the right-hand side of the equation of the controlled motion has the form 

e Eo[ sin ( ks - tot) + sin(ks + tot)] 



Control of the evolution of a dynamical system under high-frequency excitations 861 

The dimensionless variables 0, q, q' and the control E2U are introduced according to relations (6.10), 
while the small parameter e is more conveniently introduced as follows: e = 2eEok/(mo~2). The equation 
for q takes the form 

q" = esinqcos0 +eZu, q(0) = q0, q'(0) = eq,0 (6.14) 

We apply the asymptotic procedure described in Sections 2-4 to system (6.14). By means of transformation 
(2.4) we obtain a standard controlled system of the first approximation of type (2.5) 

0 x' = ey, x(0) = q 

1 0 (6 .15)  y' = - e y s i n O c o s x  + ~ e s i n 2 x c o s O ( 1 - c o s O ) + e u ,  y(O) = q 

q = x + e s i n x ( 1 - c o s O ) ,  q' = e y + e s i n x s i n O  

The use of the averaging procedure leads to a controlled system (6.15) of the pendulum type, similar 
to (6.8), 

x" = y, y" = - l s i n 2 x + l ~ ,  v = (u*) (6.16) 

As a result we have the problem of constructing a "control" "o(x,y, py) (see (6.4)), on the basis of the 
solution of the boundary-value problem for the averaged variables x and y (6.16) and the momentapx 
andpy 

1 
p'~ = ~pyCOS2X, P'r = -Px  

with corresponding final conditions and transversality conditions, in particular ~ = py when G = u2/2, 
lul < o o .  

Hence, the problem of controlling the evolution of the modified system differs considerably from 
problem (6.9), considered above, since in the first approximation it contains a "restoring force" - 
sin(2x)/4. This fact seems paradoxical, since the forward and backward waves occur additively and 
independently have no effect on the particle drift in the first approximation. However, their combined 
action leads to this effect, due to the fact that the first approximation contains quadratic terms (see 
(2.5)). In the case considered, non-zero averaged expressions on the right-hand side of the equation 
for y appear due to the mutual effect of the forward and backward waves. 

An investigation of the dynamics and controlled drift of "microparticles" in a alternating field may 
be of interest from the viewpoints of methodology and applications. It can be modelled by a wave packet 
[9] and taking the perturbing factors (the non-stationarity of the parameters, the resistance of the 
medium, etc.) into account. With standard assumptions the procedure described in Sections 2-5 can 
be applied to these problems. However, their investigation requires a separate discussion. Note that 
force actions of the travelling-wave, oppositely travelling wave or wave-packet types can be achieved 
by means of a model of an oscillating and rotating body with periodically or quasi-periodically moving 
axis. 
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